Tuesday, April 24, 2007

NEW from PTS: Computational Fluid Dynamic (CFD) Services

Behind the scenes at PTS Data Center Solutions, we’re always working to enhance our products, services and solutions in order to provide our clients with designs that offer optimum manageability and performance.

Our newest consulting service utilizes powerful 3-D Computational Fluid Dynamic (CFD) software to facilitate the design, operational analysis and maintenance of our clients’ data centers and computer rooms.

Here is an overview of the multiple applications of our CFD Services:

  • CFD Modeling as a Design Tool

By building CFD models of a mission critical space, engineers can quickly and efficiently review multiple design options. This allows for early detection of potential problems with air flow and heat distribution, thus permitting designers to provide an optimum solution.

  • CFD Operational Baseline Service

After the data center’s IT infrastructure has been populated, PTS uses CFD modeling to map the site and analyze the data center cooling characteristics down to the equipment level. By doing so, we can determine how variations in the position and design of equipment, as well as other factors, affect the room’s cooling profile.

  • Maintaining a CFD Modeled Computer Room

To ensure the high performance and manageability of a mission critical site, it is important to understand the effect that equipment changes will have before implementation takes place. Through CFD visualization, simulation and analysis, PTS’s consulting team can predict the impact of operational changes on the temperatures in the room. From there PTS is able to make recommendations for avoiding potential problems while planning for future growth. As part of the CFD modeling process, PTS maintains a complete asset inventory log as well as a detailed change order log, ensuring that infrastructure changes are tracked correctly.

If you’re interested in learning more about this data center consulting service, please visit our Computational Fluid Dynamic (CFD) Services page.

Request a Quote

To request a quote for PTS's CFD Baseline and/or Maintenance Services, please send an email to CFD@PTSdcs.com with the following information:

  1. The physical address of the location
  2. The square footage of the computer room to be modeled
  3. The number of server cabinets, racks, and stand-alone pieces of equipment in the computer room
  4. The number of IT infrastructure devices (servers, switches, routers, storage arrays, etc.) the computer room supports

Wednesday, April 11, 2007

Keeping It Clean in the Data Center

Spring is here. It’s the time of year when people throw open the windows, pull out the dust rags and fire up their vacuums for a burst of Spring Cleaning. This annual household ritual serves as a good reminder of the importance of regular cleanings within the data center environment.

Regularly scheduled site cleanings help to keep the data center environment free of dust, dirt and other particulates that can harm your operating systems and create health risks for employees. Particulates circulating within a data center can accumulate and interfere with electronics causing a variety of potential problems, including media errors and data loss.

A good rule of thumb is to schedule data center cleanings on a quarterly basis, or when particulate counts exceed the standards set by ISO 14644-8 or ISO 14644-9. By sticking to this cleaning routine, companies optimize the performance of data center equipment while cutting down on the cost of repairs. When you compare the cost of regular cleaning sessions to the overall financial investment in your data center, it’s a smart buy.

Choosing a Data Center Cleaning Service

Don’t grab a broom and dustpan just yet. While it’s good to clean both houses and data centers on a regular basis, that’s where most of the similarities end. Cleaning a data center is a delicate process that requires the services of highly-trained professionals who know how to safely handle mission critical equipment.

To help you select the right cleaning service, here are some tips:

  • Check the company’s references. In addition to the quality of the service, you want to make sure the company has experience dealing with facilities that are similar to your own.
  • Makes sure the company is insured for damages caused during the cleaning process. If an accident occurs, are you protected?
  • Evaluate the experience and training of the cleaning crew. For instance, are they trained to provide services per the requirements of International Standard ISO 14644?
  • Review the company’s cleaning methods to see if they use HEPA filtration vacuums and chemicals that are safe for use with electronics systems.
  • Be clear about your expectations for the service and establish parameters for cleaning. Will the technicians move equipment? Will they clean the sub-floor or above each rack? Are certain areas off-limits? What’s included in the service?
  • Look for a cleaning service that offers availability that meets your needs. In addition to yearly cleanings, will they be available for daily maintenance activities or in the event of an emergency?

Friday, April 06, 2007

Data Center Cooling: Approaches to Avoid

Data center cooling problems can compromise availability and increase costs. The ideal data center cooling system requires an adaptable, highly-available, maintainable, manageable, and cost effective design.

When working to design an effective data center cooling system, there are a number of commonly deployed data center cooling techniques that should not be implemented. They are:

  • Reducing the CRAC supply air temperature to compensate for hot spots
  • Using cabinet and/or enclosures with either roof-mounted fans and/or under-cabinet floor cut-outs, without internal baffles
  • Isolating high-density RLUs

Reducing CRAC Temperatures

Simply making the air colder will not solve a data center cooling problem. The root of the problem is either a lack of cold air volume to the equipment inlet or it is lack of sufficient hot return air removal from the outlet of the equipment. All things equal, any piece of equipment with internal fans will cool it self. Typically, equipment manufactures do not even specify an inlet temperature. They usually provide only a percentage of clear space the front and rear of the equipment must be maintained to ensure adequate convection.

Roof-mounted cabinet fans

CFD analysis conclusively proves that roof-mounted fans and under-cabinet air cut-outs will not sufficiently cool a cabinet unless air baffles are utilized to isolate the cold air and hot air sections. Without baffles, roof-mounted fan will draw not only the desired hot air in the rear, but also a volume of cold air from the front prior to being drawn in by the IT load. This serves only to cool the volume of hot air which we have previously established as a bad strategy. Similarly, providing a cut-out in the access floor directly beneath the cabinet will provide cold air to the inlet of the IT loads, however, it will also leak air into the hot aisle. Again, this only serves to cool the hot air.

Isolating high-density equipment

While isolating high-density equipment isn’t always a bad idea, special considerations must be made. Isolating the hot air is in fact, a good idea. However, the problem is in achieving a sufficient volume of cold air from the raised floor. Even then, assuming enough perforated floor tiles are dedicated to provide a sufficient air volume, too much of the hot air re-circulates from the back of the equipment to the front air inlet and combines with the cold air.

For more information on data center cooling, please download my newest White Paper, Data Center Cooling Best Practices, at http://www.ptsdcs.com/white_papers.asp. You can also view additional publications such as the following at our Vendor White Papers page: